Ta có A = 4^0 + 4^1 +...+ 4^2013
Xét B = 4^1 +4^2 +4^3+....+4^2013 ( 2013 số hạng)
=> B = (4^1 + 4^2 + 4^3) +(4^4+4^5+4^6) +...+ (4^2011+4^2012+4^2013)
=> B = 4^1(1+4^1+4^2) + 4^4(1+4+4^2) +...+ 4^2011(1+4+4^2)
=> B = 4^1 .21 + 4^4 . 21 +...+ 4^2011.21
=> B = 21.(4^1 + 4^4 +...+4^2011)
=> A = 4^0 + 21(4^1+4^4+..+4^2011)
=> A chia 21 dư 4^0 = 1
Vậy A chia 21 dư 1