Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

TA

Cho A=3n+6/n+1

a) Tìm n để a nguyên

b) Tìm n để A lớn nhất, nhỏ nhất

c) Tìm n để A rút gọn  được!

PQ
28 tháng 3 2018 lúc 20:20

\(a)\) Ta có : 

\(A=\frac{3n+6}{n+1}=\frac{3n+3+3}{n+1}=\frac{3n+3}{n+1}+\frac{3}{n+1}=\frac{3\left(n+1\right)}{n+1}+\frac{3}{n+1}=3+\frac{3}{n+1}\)

Để A nguyên thì \(\frac{3}{n+1}\) phải nguyên \(\Rightarrow\)\(3⋮\left(n+1\right)\)\(\Rightarrow\)\(\left(n+1\right)\inƯ\left(3\right)\)

Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)

Suy ra : 

\(n+1\)\(1\)\(-1\)\(3\)\(-3\)
\(n\)\(0\)\(-2\)\(2\)\(-4\)

Vậy \(n\in\left\{-4;-2;0;2\right\}\)

Bình luận (0)
PQ
28 tháng 3 2018 lúc 20:30

\(b)\) 

* Tính GTLN : 

Ta có : 

\(A=\frac{3n+6}{n+1}=3+\frac{3}{n+1}\)( câu a mình có làm rồi ) 

Để  đạt GTLN thì \(\frac{3}{n+1}\) phải đạt GTLN hay \(n+1>0\) và đạt GTNN 

\(\Rightarrow\)\(n+1=1\)

\(\Rightarrow\)\(n=0\)

Suy ra : 

\(A=3+\frac{3}{n+1}=3+\frac{3}{0+1}=3+\frac{3}{1}=3+3=6\)

Vậy \(A_{max}=6\) khi \(n=0\)

* Tính GTNN : 

Ta có : 

\(A=\frac{3n+6}{n+1}=3+\frac{3}{n+1}\) ( theo câu a ) 

Để A đạt GTNN thì \(\frac{3}{n+1}\) phải đạt GTNN hay \(n+1< 0\) và đạt GTLN 

\(\Rightarrow\)\(n+1=-1\)

\(\Rightarrow\)\(n=-2\)

Suy ra : 

\(A=3+\frac{3}{n+1}=3+\frac{3}{-2+1}=3+\frac{3}{-1}=3-3=0\)

Vậy \(A_{min}=0\) khi \(n=-2\)

Chúc bạn học tốt ~ 

Bình luận (0)
HH
29 tháng 3 2018 lúc 9:38

a) Ta có : 

A = n + 1 3n + 6

= n + 1/ 3n + 3 + 3

= n + 1 /3n + 3 + n + 1 /3

= n + 1 /3 n + 1 + n + 1 /3

= 3 + n + 1 /3

Để A nguyên thì  n + 1/ 3  phải nguyên ⇒3⋮ n + 1 ⇒ n + 1 ∈ Ư 3 Mà Ư 3 = 1; − 1;3; − 3 Suy ra :  n + 1 /1 −1/ 3 −3 n 0 −2 2 −4

Vậy n ∈ {−4; − 2;0;2}

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
TT
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
NC
Xem chi tiết
VT
Xem chi tiết
H24
Xem chi tiết