cho a3+b+c=3abc và abc#0 và a+b+c#0
cmr P=(\(\frac{1}{a}+\frac{1}{b}\))\(\left(\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{c}+\frac{1}{a}\right)\)=\(\frac{8}{abc}\)
Cho \(a^3+b^3+c^3=3abc\) và abc khác 0; a+b+c khác 0
Chứng minh rằng
P=\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{c}+\frac{1}{a}\right)=\frac{8}{abc}\)
1) Cho a,b,c là ba số thực thỏa mãn: abc khác 0, a+b+c khác 0 và a3+b3+c3=3abc. Chứng minh
\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{c}+\frac{1}{a}\right)=\frac{8}{abc}\)
Cho a,b,c>0 và abc=1. CMR:
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
Cho a3+b3+c3 = 3abc và a +b +c khác 0
a) Tính giá trị biểu thức \(\frac{a^2+b^2+c^2}{_{\left(a+b+c\right)^2}}\)
b)Chứng minh : P=\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{c}+\frac{1}{a}\right)=\frac{8}{abc}\)
Cho a,b,c > 0, abc=1
CMR:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}=\frac{b^3}{\left(1+c\right)\left(1+a\right)}=\frac{c^3}{\left(1+b\right)\left(1+a\right)}\)>=\(\frac{3}{4}\)
Cho a,b,c khác 0 thỏa mãn: a^3+b^3+c^3=3abc
Tính E=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Cho a,b,c>0 và abc = 1
CMR:
\(\frac{a+3}{\left(a+1\right)^2}+\frac{b+3}{\left(b+1\right)^2}+\frac{c+3}{\left(c+1\right)^2}\ge3.\\ \)
a,Cho \(a,b,c\in\left[0;1\right].CMR:\)
\(\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\ge\frac{3}{3+abc}\)
b,Cho a,b,c>0 thỏa mãn:abc=1
\(CMR:\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)