H24

cho a^3+b^3+c^3=3abc và a,b,c đôi một khác nhau. CMR a+b+c=0

DH
11 tháng 8 2017 lúc 17:20

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3abc-3a^2b-3ab^2=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3abc\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)=0\)

\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

Vì a;b;c đôi 1 khác nhau nên \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ne0\)

\(\Rightarrow a+b+c=0\) (đpcm)

Bình luận (0)
TM
11 tháng 8 2017 lúc 17:29

chuyển vế -> phân tích a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca) -> cm a2+b2+c2-ab-bc-ca >= 0

ta có: a2+b2+c2-ab-bc-ca >= 0 <=> 2a2+2b2+2c2-2ab-2bc-2ca >= 0 <=> (a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2) >=0

<=>(a-b)2+(b-c)2+(c-a)>=0

dấu "=" xảy ra khi a=b=c mà a,b,c đôi một khác nhau => a2+b2+c2-ab-bc-ca khác 0 <=> a+b+c=0

Bình luận (0)
H24
11 tháng 8 2017 lúc 17:29

cảm ơn Đức Hùng

Bình luận (0)

Các câu hỏi tương tự
NP
Xem chi tiết
BS
Xem chi tiết
NA
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
TA
Xem chi tiết
VV
Xem chi tiết
TN
Xem chi tiết