A = 30 + 31 + 32 + ... + 32017
3A = 31 + 32 + 33 + ... + 32018
3A - A = (31 + 32 + 33 + ... + 32018) - (30 + 31 + 32 + ... + 32017)
2A = 32018 - 30
Ta thấy: 32018 - 30 < 32018 \(\Rightarrow\) 2A < B. \(\Rightarrow\) A < B
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
A = 30 + 31 + 32 + ... + 32017
3A = 31 + 32 + 33 + ... + 32018
3A - A = (31 + 32 + 33 + ... + 32018) - (30 + 31 + 32 + ... + 32017)
2A = 32018 - 30
Ta thấy: 32018 - 30 < 32018 \(\Rightarrow\) 2A < B. \(\Rightarrow\) A < B
so sánh 2 số A và B nếu
\(A=-\frac{1}{2018}-\frac{3}{2017^2}-\frac{5}{2017^3}-\frac{7}{2017^4};B=\frac{-1}{2018}-\frac{7}{2017^2}-\frac{5}{2017^3}-\frac{3}{2017^4}\)
So sánh A và B nếu
\(A=\frac{-1}{2018}-\frac{3}{2017^2}-\frac{5}{2017^3}-\frac{7}{2017^4}\)
\(B=\frac{-1}{2018}-\frac{7}{2017^2}-\frac{5}{2017^3}-\frac{3}{2017^4}\)
So sánh \(A=\frac{2^{2018}-3}{2^{2017}-1}\) và \(B=\frac{2^{2017}-3}{2^{2016}-1}\)
Cho A = 1 + 1/2 + 1/3 + ..... + 1/4034 và B =1 + 1/3 +1/5 + .... + 1/4033
So sánh A/B với \(1\frac{2017}{2018}\)
Cho A=1/1!+1/2!+1/3!+...+1/2018!
So sánh A và 2017/1152
Cho A= 2^0+2^1+2^2+...+2^2017, B=2^2018. So sánh A và B
Bài 1
Cho 3 số a, b, c thỏa mãn \(\frac{a}{2016}\)=\(\frac{b}{2017}\)=\(\frac{c}{2018}\)
Chứng minh rằng: ( a - c )3 = 8( a - b )2 . ( b - c )
Bài 2
Cho A = 1 + 2 + 22 + ... + 22017 và B = 22018. So sánh A và B
So sánh :
\(A=\frac{2^{2018}-3}{2^{2017}-1};B=\frac{2^{2017}-3}{2^{2016}-1}\)
6. Cho A = 1 + 2 + 22 + 23 + ... + 22016 + 22017
B = 22018 - 1
So sánh A và B