Ta có: (a3 + 3ab2)2 = a6 + 6a4b2 + 9a2b4 = 20062
(b3 + 3a2b)2 = b6 + 6a2b4 + 9a4b2 = 20052
=> (a3 + 3ab2)2 - (b3 + 3a2b)2 = a6 - 3a4b + 3a2b4 - b6 = 20062 - 20052
Hay (a2 - b2)3 = 4011. Vậy P = a2 - b2 = \(\sqrt[3]{4011}\)
Ta có: (a3 + 3ab2)2 = a6 + 6a4b2 + 9a2b4 = 20062
(b3 + 3a2b)2 = b6 + 6a2b4 + 9a4b2 = 20052
=> (a3 + 3ab2)2 - (b3 + 3a2b)2 = a6 - 3a4b + 3a2b4 - b6 = 20062 - 20052
Hay (a2 - b2)3 = 4011. Vậy P = a2 - b2 = \(\sqrt[3]{4011}\)
Tính: a, \(\sqrt{2006+2\sqrt{2005}}-\sqrt{2006-2\sqrt{2005}}\)
b, \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
Bài 1: a) Chứng minh: (ac+bd)2+(ad-bc)2=(a2+b2)(c2+d2)
b) Chứng minh bất đẳng thức Bunhiacoopxki(ac+bd)2\(\le\) (a2+b2)(c2+d2)
Help me !!!!!!!!!!!
Rút gọn:
a) \(A=\dfrac{1}{\sqrt{3}+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+\dfrac{1}{\sqrt{7}+\sqrt{9}}+... +\dfrac{1}{\sqrt{97}+\sqrt{99}}\)
b) \(B=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{2006\sqrt{2005}+2005\sqrt{2006}}+\dfrac{1}{2007\sqrt{2006}+2006\sqrt{2007}}\)
Cho a,b,c>0 và a2+b2+c2=1
Tìm Min \(S=a+b+c+\dfrac{1}{abc}\)
a2+b2+c2+3/4 >= -a-b-c
Cho a,b,c là các số thực khác 0 và \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\)
Tính giá trị của biểu thức: \(P=\left(a^{2004}-b^{2004}\right)\left(b^{2005}+c^{2005}\right)\left(c^{2006}-a^{2006}\right)\)
Cho a; b; c là các số thực khác 0 và \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\).
Tính giá trị của biểu thức P = (a2004 - b2004)(b2005 + c2005)(c2006-a2006)
so sánh
\(\sqrt{2004}-\sqrt{2003}và\sqrt{2006}-\sqrt{2005}\)
Cm 1/a2 +1/ b2 +1/ c2>1/ab+1/bc+1/ac
tìm nghiệm dương của PT
\(\left(1+x-\sqrt{x^2-1}\right)^{2005}+\left(1+x+\sqrt{x^2-1}\right)^{2005}=2^{2006}\)