\(\frac{2n}{n-2}=\frac{2n-4+4}{n-2}=\frac{2.\left(n-2\right)+4}{n-2}=2+\frac{4}{n-2}\)
Để a là số nguyên thì \(2+\frac{4}{n-2}\)là số nguyên
Có \(2\in Z\)nên để \(2+\frac{4}{n-2}\)nguyên thì \(\frac{4}{n-2}\)nguyên
Để \(\frac{4}{n-2}\)nguyên thì \(4⋮n-2\)
\(\Leftrightarrow n-2\inƯ\left(4\right)\)
\(\Leftrightarrow n-2\in\left\{-4;-2;-1;1;2;4\right\}\)
Lập bảng
n-2 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -2(TM) | 0(TM) | 1(TM) | 3(TM) | 4(TM) | 6(TM) |
Vậy.....