a2 + b2 + c2 = ab + bc + ca
=>2.(a2+b2+c2)=2.(ab+bc+ca)
<=>a2+2b2+2c2=2ab+2bc+2ca
<=>2a2+2b2+2c2-2ab-2bc-2ca=0
<=>a2-2ab+b2+b2-2bc+c2+c2-2ca+a2=0
<=>(a-b)2+(b-c)2+(c-a)2=0
<=>a-b=0 và b-c=0 và c-a=0
<=>a=b và b=c và c=a
=> a=b=c
mà a;b;c khác 0 nên
P=1+1+1=3
a2 + b2 + c2 = ab + bc + ca => 2. (a2 + b2 + c2 )= 2.( ab + bc + ca)
<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2) = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0 <=> (a - b)2 = (b - c)2 = (c - a)2 = 0 (Vì (a - b)2 \(\ge\) 0; ( b - c)2 \(\ge\)0 ; (c - a)2 \(\ge\) 0
<=> a = b = c
=> \(P=\frac{a^4}{a^4}+\frac{b^4}{b^4}+\frac{a^{2016}}{a^{2016}}=1+1+1=3\)