A- Tìm MAX (a^2 + b^2 + c^2)
Từ ab + bc + ca = 1 <=> ab + c(a + b) = 1 dễ thấy rằng nếu cho a và b những giá trị lớn bao nhiêu cũng được thì bao giờ cũng có 1 số c sao cho ab + bc + ca = 1 (chỉ cần chọn c = (1 - ab)/(a + b) ).Vì a và b lớn bao nhiêu cũng được nên a^2 + b^2 + c^2 cũng lớn bao nhiêu cũng được ---> không có GTLN
B- Tìm MIN (a^2 + b^2 + c^2) (làm luôn phần này vì có thể bạn chép sai đề)
a) Cách 1 : Theo BĐT Cauchy, ta có
...a^2 + b^2 >= 2ab
...b^2 + c^2 >= 2bc
...c^2 + a^2 >= 2ac
...---> 2(a^2 + b^2 + c^2) >= 2(ab + bc + ca) = 2
...---> a^2 + b^2 + c^2 >= 1 (dấu bằng xảy ra khi a^2 = b^2 = c^2 = 1 và a = b = c <=> a = b = c = (căn 3)/3 hoặc a = b = c = (-căn 3)/3 )
Vậy MIN (a^2 + b^2 + c^2) = 1 khi a = b = c = (căn 3)/3 hoặc a = b = c = (- căn 3)/3
b) Cách 2 : Áp dụng BĐT Bunhiacopski, ta có
...(a^2 + b^2 + c^2)(b^2 + c^2 + a^2) >= (ab + bc + ca)^2
...---> a^2 + b^2 + c^2 >= ab + bc + ca = 1 (dấu bằng xảy ra khi a/b = b/c = c/a <=> a = b = c = (căn 3)/3 hoặc a = b = c = (- căn 3)/3 )
...---> MIN (a^2 + b^2 + c^2) = 1 khi a = b = c = (căn 3)/3 hoặc a = b = c = (- căn 3)/3
A- Tìm MAX (a^2 + b^2 + c^2)
Từ ab + bc + ca = 1 <=> ab + c(a + b) = 1 dễ thấy rằng nếu cho a và b những giá trị lớn bao nhiêu cũng được thì bao giờ cũng có 1 số c sao cho ab + bc + ca = 1 (chỉ cần chọn c = (1 - ab)/(a + b) ).Vì a và b lớn bao nhiêu cũng được nên a^2 + b^2 + c^2 cũng lớn bao nhiêu cũng được ---> không có GTLN
B- Tìm MIN (a^2 + b^2 + c^2) (làm luôn phần này vì có thể bạn chép sai đề)
a) Cách 1 : Theo BĐT Cauchy, ta có
...a^2 + b^2 >= 2ab
...b^2 + c^2 >= 2bc
...c^2 + a^2 >= 2ac
...---> 2(a^2 + b^2 + c^2) >= 2(ab + bc + ca) = 2
...---> a^2 + b^2 + c^2 >= 1 (dấu bằng xảy ra khi a^2 = b^2 = c^2 = 1 và a = b = c <=> a = b = c = (căn 3)/3 hoặc a = b = c = (-căn 3)/3 )
Vậy MIN (a^2 + b^2 + c^2) = 1 khi a = b = c = (căn 3)/3 hoặc a = b = c = (- căn 3)/3
đăng bài khó z lm cả 10 phút
A- Tìm MAX (a^2 + b^2 + c^2)
Từ ab + bc + ca = 1 <=> ab + c(a + b) = 1 dễ thấy rằng nếu cho a và b những giá trị lớn bao nhiêu cũng được thì bao giờ cũng có 1 số c sao cho ab + bc + ca = 1 (chỉ cần chọn c = (1 - ab)/(a + b) ).Vì a và b lớn bao nhiêu cũng được nên a^2 + b^2 + c^2 cũng lớn bao nhiêu cũng được ---> không có GTLN
B- Tìm MIN (a^2 + b^2 + c^2) (làm luôn phần này vì có thể bạn chép sai đề)
a) Cách 1 : Theo BĐT Cauchy, ta có
...a^2 + b^2 >= 2ab
...b^2 + c^2 >= 2bc
...c^2 + a^2 >= 2ac
...---> 2(a^2 + b^2 + c^2) >= 2(ab + bc + ca) = 2
...---> a^2 + b^2 + c^2 >= 1 (dấu bằng xảy ra khi a^2 = b^2 = c^2 = 1 và a = b = c <=> a = b = c = (căn 3)/3 hoặc a = b = c = (-căn 3)/3 )
Vậy MIN (a^2 + b^2 + c^2) = 1 khi a = b = c = (căn 3)/3 hoặc a = b = c = (- căn 3)/3
b) Cách 2 : Áp dụng BĐT Bunhiacopski, ta có
...(a^2 + b^2 + c^2)(b^2 + c^2 + a^2) >= (ab + bc + ca)^2
...---> a^2 + b^2 + c^2 >= ab + bc + ca = 1 (dấu bằng xảy ra khi a/b = b/c = c/a <=> a = b = c = (căn 3)/3 hoặc a = b = c = (- căn 3)/3 )
...---> MIN (a^2 + b^2 + c^2) = 1 khi a = b = c = (căn 3)/3 hoặc a = b = c = (- căn 3)/3