cho A=\(\frac{2}{3}+\frac{8}{9}+\frac{26}{27}+...+\frac{3^n-1}{3^n}\)
=> n-A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^n}\)
=>\(3\left(n-A\right)\)=\(1\)\(+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{3n-1}}\)
=> \(3\left(n-A\right)-\left(n-A\right)=2\left(n-A\right)=1-\frac{1}{3^n}\)
=>\(2\left(n-A\right)< 1\)
=>\(n-A< \frac{1}{2}\)
=> \(A< n-\frac{1}{2}\)
Deu la tui het do
Sao lại là n-A thế bạn? n đã tìm đc đâu