\(A=\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}=\left(1-\frac{1}{2017}\right)+\left(1-\frac{1}{2018}\right)+\left(1-\frac{1}{2019}\right)\)
\(A=3-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)< 3\)
Ta có :
2016/2017 < 1
2017/2018 < 1
2018/2019 < 1
Mà 2016/2017 + 2017/2018 + 2018/2019 < 1 + 1 + 1 = 3
Nên A < 3