ta có :
\(a^2+b^2+\left(a-b\right)^2=c^2+d^2+\left(c-d\right)^2\\ \Rightarrow a^2+b^2+a^2+b^2+2ab=c^2+d^2+c^2+d^2+2cd\\ \Rightarrow a^2+b^2+ab=c^2+d^2+cd\\ \Rightarrow\left(a^2+b^2+ab\right)^2=\left(c^2+d^2+cd\right)^2\\ \Rightarrow a^4+b^4+a^2b^2+2a^2b^2+2a^3b+2b^3a=c^4+d^4+c^2d^2+2c^2d^2+2c^3d+2d^3c\\ \Rightarrow a^4+b^4+\left(a+b\right)^4=c^4+d^4+\left(c+d\right)^4\\ \Rightarrow\text{đ}pcm\)