H24

- Cho A=1+x+x2+...+xn. CMR A=\(\dfrac{x^{n+1}-1}{x-1}\) từ đó suy ra xn+1-1 chia hết cho x-1 với mọi x nguyên dương (lớp 6 cũng c/m được :)

AH
21 tháng 1 2022 lúc 21:59

Lời giảiL

$A=1+x+x^2+...+x^n$

$xA=x+x^2+x^3+...+x^n+x^{n+1}$

$\Rightarrow xA-A=(x+x^2+x^3+...+x^{n+1})-(1+x+x^2+...+x^n)$

Hay $A(x-1)=x^{n+1}-1$

$\Rightarrow A=\frac{x^{n+1}-1}{x-1}$ với $x$ nguyên dương khác $1$

Vì $A$ nguyên với mọi $x$ nguyên dương, $n$ tự nhiên nên $\frac{x^{n+1}-1}{x-1}$ nguyên

$\Rightarrow x^{n+1}-1\vdots x-1$ (đpcm)

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
NN
Xem chi tiết
Xem chi tiết
NH
Xem chi tiết
NK
Xem chi tiết
LS
Xem chi tiết
TT
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết