Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 1:Cho các số thực a,b,c thỏa mãn a^3 - b^2 - b = b^3 - c^2 - c = c^3 - a^2 - a =1/3. Chứng minh rằng a=b=c
Bài 2:Cho các số nguyên a1,a2,a3,...,an có tổng chia hết cho 3. Chứng minh P= a1^3 + a2^3 + a3^3 + ... +an^3 chia hết cho 3
cho các số tự nhiên a1;a2;...;a2013 có tổng bằng 2013^2014.
chứng minh rằng: a1^3 + a2^3 +... +a2013^3 chia hết cho 3.
Cho a1,a2,a3,....,a2016 là các số tự nhiên có tổng 3 chữ số chia hết cho 3
CMR: A = a1\(^3\) + a2\(^3\) + .....+ a2016\(^3\) chia hết cho 3
Cho a và b là hai sô' tự nhiên thoả mãn (a + 3) và (b + 4) cùng chia hết cho 5. Chứng minh a 2 + b 2 cũng chia hết cho 5.
mọi ngươi giup minh nha
cho: a1,a2,a3,.....................An là các số tự nhiên dương khác nhau và khác 1
chứng minh rằng đẳng thứ sau k xảy ra:
1/a1^2 + 1/a2^2 + 1/a3^3+..........+1/an^2
giúp mminh đi
Bài 1:Cho a1,a2,....,a2018 thuộc Z
CMR:a1+a2+...+a2018 chia hết cho 30 khi và chỉ khi a1^5 + a2^5 +...+ a2018^5 chia hết cho 30\
Bài 2: Tìm x,y thuộc N* sao cho x+y+1 chia hết cho xy
Bài 3: tìm x,y thuộc N* sao cho y+1 chia hết cho x, x+1 chia hết cho y
Bài 4:Tìm x,y thuộc N* sao cho y+2 chia hết cho x, x+2 chia hết cho y
Bài 5: Tìm x,y thuộc N* sao cho 2x+1 chia hết cho y, 2y+1 chia hết cho x
Bài 6: CMR: Với mọi n thuộc Z ta có n^5 + 5n chia hết cho 6
Bài 7:CMR: Với mọi n thuộc Z ta có n(2n+7)(7n+1) chia hết cho 6
Giúp mình nhé, cảm ơn các bạn nhiều!!!
Cho a và b là hai sô' tự nhiên và b > a. Biết a chia cho chia cho 4 dư 3. Chứng minh b 2 - a 2 chia hết cho 4.
Chứng minh rằng nếu a va b la cac so nguyen aa2 + bb2 chia hết cho 3 thì a va b cùng chia hết cho 3
cho 4 số nguyên a1,a2,a3,a4
TM: (a2)^2 = a1 x a3 và (a3)^2= a2 x a4
CMR: ( (a1)^3 + (a2)^3 + (a3)^3 ) / ( (a2)^3 + (a3)^3 + (a4)^3 ) = a1/a4
Cho các số nguyên a, b sao cho a+b chia hết cho 6. Chứng minh rằng a3-5b3 cũng chia hết cho 6.