Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

MN

Cho A=1+9^19+93^199+1993^1994 không phải số chính phương

LH
11 tháng 8 2016 lúc 14:37

\(A=1+9^{19}+93^{199}+1993^{1994}\)

Ta có :

\(9\text{≡}0\left(mod3\right)\)

\(\Rightarrow9^{19}\text{≡}0\left(mod3\right)\)

\(93\text{≡}0\left(mod3\right)\)

\(\Rightarrow93^{199}\text{≡}0\left(mod3\right)\)

\(1993\text{≡}1\left(mod3\right)\)

\(\Rightarrow1993^{1994}\text{≡}1\left(mod3\right)\)

\(\Rightarrow A=1+9^{19}+93^{199}+1993^{1994}\text{≡}1+0+0+1\text{≡}2\left(mod3\right)\)

Một số nguyên có thể có dạng \(3k;3k+1\)hoặc \(3k+2\)

TH1 : \(\left(3k\right)^2=9k^2\text{≡}0\left(mod3\right)\)

TH2 : \(3k+1\text{≡}1\left(mod3\right)\)

\(\Rightarrow\left(3k+1\right)^2\text{≡}1\left(mod3\right)\)

TH3 : \(3k+2\text{≡}2\left(mod3\right)\)

\(\Rightarrow\left(3k+2\right)^2\text{≡}2^2\text{≡}1\left(mod3\right)\)

Do đó số chính phương nào cũng chia hết cho 3 hoặc chia 3 dư 1.

Mà \(A\text{≡}2\left(mod3\right)\)hay \(A\)chia 3 dư 2 nên A không phải số chính phương.

Vậy ...

Bình luận (0)

Các câu hỏi tương tự
TA
Xem chi tiết
GT
Xem chi tiết
DL
Xem chi tiết
LT
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
PT
Xem chi tiết
VV
Xem chi tiết