DS

Cho A=1.4/2.3+2.5/3.4+3.6/4.5+...+98.101/99.100.CM 97<A<98
 

NM
7 tháng 3 2020 lúc 8:56

\(A=\frac{4}{6}+\frac{10}{12}+\frac{18}{20}+...+\frac{9898}{9900}\)

\(A=1-\frac{2}{6}+1-\frac{2}{12}+1-\frac{2}{20}+...+1-\frac{2}{9900}\)

\(A=98-\left(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{99.100}\right)\)Đặt Biểu thức trong ngoặc đơn là B

\(\Rightarrow A=98-B\)

\(\Rightarrow\frac{B}{2}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(\frac{B}{2}=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{100-99}{99.100}\)

\(\frac{B}{2}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

\(\Rightarrow B=\frac{2.49}{100}=\frac{98}{100}\)

Ta nhận thấy \(B=\frac{98}{100}< 1\Rightarrow A=98-\frac{98}{100}=97+\frac{2}{100}\)

\(\Rightarrow97< A< 98\left(dpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
PT
Xem chi tiết
PH
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết
KM
Xem chi tiết
NA
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
IM
Xem chi tiết