Bài làm:
Ta có: \(A=\frac{12n+1}{2n+3}=\frac{\left(12n+18\right)-17}{2n+3}=\frac{6\left(2n+3\right)-17}{2n+3}=6-\frac{17}{2n+3}\)
Để A nguyên => \(\frac{17}{2n+3}\inℤ\)
\(\Rightarrow17⋮\left(2n+3\right)\Rightarrow\left(2n+3\right)\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
\(\Leftrightarrow2n\in\left\{-20;-4;-2;14\right\}\)
\(\Rightarrow n\in\left\{-10;-2;-1;7\right\}\)
Vậy khi \(n\in\left\{-10;-2;-1;7\right\}\)thì A có giá trị nguyên