Ta có :
\(A=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{9}{10!}\)
\(A=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{10-1}{10!}\)
\(A=\left(\frac{2}{2!}-\frac{1}{2!}\right)+\left(\frac{3}{3!}-\frac{1}{3!}\right)+\left(\frac{4}{4!}-\frac{1}{4!}\right)+...+\left(\frac{10}{10!}-\frac{1}{10!}\right)\)
\(A=\left(1-\frac{1}{2!}\right)+\left(\frac{1}{2!}-\frac{1}{3!}\right)+\left(\frac{1}{3!}-\frac{1}{4!}\right)+...+\left(\frac{1}{9!}-\frac{1}{10!}\right)\)
\(A=1-\frac{1}{10!}< 1\)
vậy A < 1 vì \(0< \frac{1}{10!}< 1\)