Ta thấy:\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}
Đúng 0
Bình luận (0)
Ta thấy:\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}
cho
A=1/2^2+1/3^2+1/4^2+...+1/100^2.CMR A<3/4
Bài 4 :
a,Cho A= 1/2!+1/3!+.....+1/100!
CMR A<1
b, CMR :1-1/2+1/3-1/4+...+1/99-1/100=1/51+1/52+....+1/100
Giúp mình với:
Cho A=1/1×2^2+1/2×3^2+1/3×4^2+...+1/99×100^2. CMR A<4/9
CMR:
a)1/10^2 +1/11^2+1/12^2+...+1/100^2 >3/4
b)1/2^2+1/3^2+1/4^2+...+1/100^2<99/100
c)1/2^2+1/3^2+1/4^2+...+1/100^2<3/4
Cho A=1/22+1/32+1/42+...+1/1002
CMR: A<3/4
A=1/2^2 + 1/4^2 + 1/6^3 + ... +1/100^2 . CMR A<1/2
Cho A = 1 + 1/2 = 1/3 + 1/4 + ... + 1/2^100 -1
CMR : a) A < 100
b) A > 50
Tính:
A=1*2*3+2*3*4+3*4*5+......+98*99*100
CMR:
A=1/4+1/16+1/36+1/64+1/100+1/144+1/196<1/2
CMR: A=1/2^2+1/3^2+1/4^2+...+1/100^2<1