EH

cho A=1+2015+2015^2+...+2015^99

CM:2014A+1 la so chinh phuong

 

 

 

 

 

.
11 tháng 3 2020 lúc 14:41

A=1+2015+20152+...+201599

=> 2015A=2015+20152+20153+...+2015100

=> 2015A-A=(2015+20152+20153+...+2015100)-(1+2015+20152+...+201599)

2014A=2015100-1

=> 2014A+1=2015100-1+1=2015100=(20152)50

Vì 2015100 bằng bình phương của 1 số tự nhiên 

=> 2014A+1 là số chính phương

Bình luận (0)
 Khách vãng lai đã xóa
TL
11 tháng 3 2020 lúc 15:44

\(A=1+2015+2015^2+...+2015^{99}\)

\(\Leftrightarrow2015A=2015+2015^2+2015^3+....+2015^{100}\)

\(\Leftrightarrow2015A-A=\left(2015+2015^2+....+2015^{100}\right)-\left(1+2015+2015^2+....+2015^{99}\right)\)

\(\Leftrightarrow2014A=2015^{100}-1\)

=> 2014A+1=\(2015^{100}=\left(2015^{50}\right)^2\)

=> 2014A+1 là số chính phương (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
NL
Xem chi tiết
NT
Xem chi tiết
TS
Xem chi tiết
H24
Xem chi tiết
NB
Xem chi tiết
LL
Xem chi tiết
NQ
Xem chi tiết
ND
Xem chi tiết