H24

Cho A=1/1.2+1/2.3+1/3.4+1/4.5+...+1/2018.2019+1/2019.2020 thì A có giá trị là ? 
Giúp mình với ạ mình đang cần gấp í:)

H24
3 tháng 5 2022 lúc 10:15

\(\text{#}HaimeeOkk\)

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2018.2019}+\dfrac{1}{2019.2020}\)

\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2018}-\dfrac{1}{2019}+\dfrac{1}{2019}-\dfrac{1}{2020}\)

\(A=1-\left(\dfrac{1}{2}-\dfrac{1}{2}\right)-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-...-\left(\dfrac{1}{2019}-\dfrac{1}{2019}\right)-\dfrac{1}{2020}\)

\(A=1-0-0-0-...-0-\dfrac{1}{2020}\)

\(A=1-\dfrac{1}{2020}\)

\(A=\dfrac{2019}{2020}\)

Vậy \(A=\dfrac{2019}{2020}\)

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
HD
Xem chi tiết
NT
Xem chi tiết
LQ
Xem chi tiết
LQ
Xem chi tiết
NB
Xem chi tiết
HK
Xem chi tiết
VH
Xem chi tiết
HA
Xem chi tiết