Cho abc=1. Tìm GTNN P=\(\frac{a^3}{b^2+1}+\frac{b^3}{c^2+1}+\frac{c^3}{a^2+1}\)
Cho a,b,c là 3 số thực dương thỏa mãn \(a^2+b^2+c^2\le\frac{3}{4}\)
Tìm GTNN của biểu thức \(P=8abc+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
cho 2 số dương a và b thoả a+b ≤ 2\(\sqrt{2}\)
Tim GTNN của P = \(\dfrac{1}{a}+\dfrac{1}{b}\)
2.Cho a,b,c,d là các số thực dương thỏa mãn a2 + b2 + c2 = 1. Chứng minh: \(\frac{1}{b^2+c^2}+\frac{1}{c^2+a^2}+\frac{1}{a^2+b^2}\le\frac{a^3+b^3+c^3}{2abc}+3\) 1. Cho các số dương a,b,c thỏa mãn a+b+c=1. Chứng minh \(\frac{a}{1+b-a}+\frac{b}{1+c-b}+\frac{c}{1+a-c}\ge1\)
Cho \(a,b,c>0\)và \(ab+bc+ca=1\). Chứng minh \(M=\frac{1-a^2}{1+a^2}+\sqrt{3}\left(a^2+b^2+c^2\right)\le\frac{1}{8}+\frac{b^2}{1+b^2}+\frac{c^2}{1+c^2}+\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
Cho a, b, c > 0 và có tích bằng 1. CMR:
\(\frac{1}{1+a+b}+\frac{1}{1+b+c} \)\(+\frac{1}{1+c+a}\le\frac{1}{a+2}\)\(+\frac{1}{b+2}+\frac{1}{c+2}\)
Cho a,b,c là 3 số thực dương thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le a+b+c\). Tìm giá trị lớn nhất của
\(T=\frac{1}{2+a^2}+\frac{1}{2+b^2}+\frac{1}{2+c^2}\)
1. Cho a,b,c thực dương thỏa mãn: abc=1
Tìm GTLN:
A= \(\frac{a}{b^4+c^4+a}+\frac{b}{a^4+c^4+b}+\frac{c}{a^4+b^4+c}\)
2. Cho a,b,c thực dương thỏa mãn: abc= a+b+c+2
Tìm max:
P= \(\frac{1}{\sqrt{a^2+b^2}}+\frac{1}{\sqrt{b^2+c^2}}+\frac{1}{\sqrt{a^2+c^2}}\)
Cho a>0, b>0, c>0 thỏa mãn: \(\frac{a^3}{b+4c}\ge1\)
Tìm GTNN của: \(P=\frac{16a}{3}+\frac{1}{b}+\frac{1}{c}\)