Cho A1,A2,A3,A4,.....,A100 là các số nguyên thoả mãn A1+A2+A3+....+A100=2*2019
Chứng minh rằng : A1*2+A2*2+A3*2+.…..+A100*2 chia hết cho 2
Cho a1+a2+...+a100 là các số nguyên thỏa mãn điều kiện a1+a2+...+a100=2^2015.
Chứng tó rằng a1^2+a2^2+...+a100^2 chia hết cho 2
cho a1 và a2 là 2 số nguyên tố lẻ liên tiếp (a1> a2)
chứng minh rằng:\(\frac{a1+a2}{2}\) là hợp số
Tìm 4 số nguyên tố liên tiếp tăng dần a1<a2<a3<a4 sao cho b=a1+a2 mũ 2+a3 mũ 2+a4 mũ 2 cũng là số nguyên tố
Tìm 4 số nguyên tố liên tiếp tăng dần a1<a2<a3<a4 sao cho b=a1+a2 mũ 2+a3 mũ 2+a4 mũ 2 cũng là số nguyên tố
1,Cho 10 số tự nhiên bất kỳ: a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc
tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.
2,a. Tìm n để n2+ 2006 là một số chính phương.
b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2+ 2006 là số nguyên tố hay là hợp số.
Cho a1;a2;a3;a4;a5;.......;a2015 thuộc N (1;2;3;......;2015 là số thứ tự)
biết a1+a2+a3+.........+a2015=2015*2016
Chứng minh rằng a1^3 +a2^3 +a3^3 +...........+a2015^3 chia hết cho 6
Cho 20 số nguyên khác 0: a1;a2;a3;...;a20 thõa mãn đồng thời các điều kiện sau:
+ a1 là số dương
+ Tổng của ba số nguyên liên tiếp bất kì là một số dương
+ Tổng của tất cả 20 số đó là một số âm
Chứng minh rằng a2 < 0 và a3 > 0
1)a)tìm n thuộc N*để 3n+1chia hết cho5n-2
b)tìm các chữ số a,,b,c để 7268abc chia hết cho 7,12,8,9
2)cho a và blaf 2 số nguyên tố cùng nhau sao cho a,b khác tính chẵn lẻ cmr a+b và a(a+2)+ab là 2 số nguyên tố cùng nhau
3)cmr với mọi n thuộc N* thì
1.2.3+2.3.5+3.4.7+..+n(n+1)(2n+1)=n(n+1)^2(n+2)/2
4)cho 17 số tự nhiên khác 0:a1,a2,a3,....,a17mà a1+a2+a3+...+a17=153153
cmr a1^5+a2^9+a3^13+...+a17^69 không phải số chính phương
cho n số nguyên bất kỳ a1,a2,a3,...,an (n thuộc N n_>2) chứng tỏ nếu n là số tự nhiên chia 4 dư 1 thì tổng A =|a1-a2+1| + |a2-a3+2| + |a3-a4+3|+...+|an-1 - an +n-1| + |an-a1+n| là số tự nhiên lẻ