1-3/2.10-3/4.15-3/6.20-3/8.25-...-3/1340.3355
A= 1 - \(\frac{3}{2.10}\)- \(\frac{3}{4.15}\)- \(\frac{3}{6.20}\)- \(\frac{3}{8.25}\)- ... - \(\frac{3}{198.500}\)
a) A= 32 . 1/243 . 812 .1/33
b) B= (4.25 ):(23 .1/6)
c) C= (-1/3)3 .(-1/3)2 .(-1/3)
d) D= (-1/3)-1 -(-6/7)0 +(1/2)2 :2
\(M=\dfrac{3^6.45^4-15^4.9^4}{27^4.25^3+7.45^6}\)
Cho a+b+c=2010 và \(\dfrac{1}{a+b}+\dfrac{1}{a+b}+\dfrac{1}{c+a}=\dfrac{1}{201}TínhS=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
a,\(\frac{3^6.45^4-15^{13}.5^{-9}}{27^4.25^3+46^6}\)
Tính A=3/1^2.2^2 + 5/2^2.2^3 + 7/3^2.4^2 +....+ 19/9^2.10^2
tính
a,\(\frac{3^0.45^4-15^3.5^{-9}}{27^4.25^3+45^6}\)
Tính:
a) \(\dfrac{3^6.45^4-15^{13}.5^{\cdot-9}}{27^4.25^3+45^6}\)
b) \(\dfrac{\left(\dfrac{2}{5}\right)^7.5^7+\left(\dfrac{9}{4}\right)^3:\left(\dfrac{3}{16}\right)^3}{2^7.5^2+512}\)