CN

Cho A = (x^3+2x^2-1)/(x^3+2x^2+2x+1)

Rút gọn A và tìm tất cả số nguyên x để A có giá trị nguyên.

NA
18 tháng 6 2018 lúc 10:49

ĐKXĐ  x khac -1\(A=\frac{x^3+2x^2-1}{x^3+2x^2+2x+1}=\frac{x^3+x^2+x^2+x-x-1}{x^3+x^2+x^2+x+x+1}=\frac{x^2\left(x+1\right)+x\left(x+1\right)-\left(x+1\right)}{x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)}=\frac{\left(x+1\right)\left(x^2+x-1\right)}{\left(x+1\right)\left(x^2+x+1\right)}=\frac{x^2+x-1}{x^2+x+1}\)

\(ta.coA=\frac{x^2+x-1}{x^2+x+1}=\frac{x^2+x+1-2}{x^2+x+1}=1-\frac{2}{x^2+x+1}\)

Để A \(\in Z\Leftrightarrow\frac{2}{x^2+x+1}\in Z\Rightarrow x^2+x+1\inƯ\left(2\right)\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\in\left\{\pm1;\pm2\right\}\)

giải ra ta được \(x=0,x=-1\)(t/m)

Bình luận (0)