LV

cho a và b là hai số nguyên dương, ƯCLN (a,b)=1 và a+ b là số chẵn. Chứng minh rằng P=ab(a-b)(a+b) chia hết cho 24

AN
19 tháng 11 2016 lúc 20:11

Ta có: a + b chẵn và a,b nguyên tố cùng nhau nên a,b là hai số lẻ

*chứng minh P chia hết cho 8

Ta có (a + b) = 2k

a - b = a + b - 2b = 2k - 2b = 2(k - b)

Với k là số chẵn thì (a + b) chia hết cho 4, (a - b) chia hết cho 2

=> P chia hết cho 8

Với k là số lẻ thì (a + b) chia hết cho 2, (a - b) chia hết cho 4

=> P chia hết cho 8

Vậy ta có P chia hết cho 8 (1)

*Chứng minh P chia hết cho 3

Vì cả a, b đều là số lẻ nên a,b chia cho 3 dư 0 hoặc dư 1

Với 1 trong 2 số a,b chia hết cho 3 thì P chia hết cho 3

Với a,b chia cho 3 dư 1 thì (a - b) chia hết cho 3

Vậy P chia hết cho 3

Từ (1) và (2) kết hợp với việc 3 và 8 là hai số nguyên tố cùng nhau thì ta => P chia hết cho 24

Bình luận (0)
SG
19 tháng 11 2016 lúc 22:55

alibaba nguyễn: Khi chứng minh P chia hết cho 3

a; b lẻ vx có thể chia 3 dư 2 chứ; vd như 5; 17; 29; ... chẳng hạn

t nghĩ lm thế này: Câu hỏi của letienluc - Toán lớp 6 | Học trực tuyến

Bình luận (0)
AN
19 tháng 11 2016 lúc 23:08

Bổ xung phần bạn Tiểu góp ý.

Với a,b cùng chia cho 3 dư 2 thì (a - b) chia hết cho 3

Với a chia 3 dư 2,b chia 3 dư 1( hoặc ngược lại) thì (a + b) = 3m + 1 + 3n + 2 = 3m + 3n + 3 chia hết cho 3

Bình luận (0)
MH
19 tháng 3 2019 lúc 21:09

Chị lấy ảnh đại diện của Jisoo thật là xinh quá đi.

Bình luận (0)
LT
13 tháng 4 2019 lúc 20:17

cho a và b là hai số nguyên dương, ƯCLN (a,b)=1 và a+ b là số chẵn. Chứng minh rằng P=ab(a-b)(a+b) chia hết cho 24

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
CM
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PV
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HP
Xem chi tiết
H24
Xem chi tiết