Ôn tập cuối năm phần số học

AS

cho a và b là các sô thực dương. CMR

a3/(a2+b2)+b3/(b2+1)+1/(a2+1)>=(a+b+1)/2

ND
22 tháng 5 2017 lúc 20:24

nhận thấy nếu áp dụng bất đẳng thức như bình thường thì ta sẽ bị ngược dấu, do đó ta dùng kỹ thuật cauchy ngược dấu

ta có:

\(\dfrac{a^3}{a^2+b^2}\)=a-\(\dfrac{a.b^2}{a^2+b^2}\)\(\ge\)a-\(\dfrac{a.b^2}{2ab}\)=a-\(\dfrac{b}{2}\)

\(\dfrac{b^3}{b^2+1}\)=b-\(\dfrac{b}{b^2+1}\)\(\ge\)b-\(\dfrac{b}{2b}\)=b-\(\dfrac{1}{2}\)

\(\dfrac{1}{a^2+1}\)=1-\(\dfrac{a^2}{a^2 +1}\)\(\ge\)1-\(\dfrac{a^2}{2a}\)=1-\(\dfrac{a}{2}\)

cộng từng vế của bất đẳng thức lại với nhau ta được:

\(\dfrac{a^3}{a^2+b^2}\)+\(\dfrac{b^3}{b^2+1}\)+\(\dfrac{1}{a^2+1}\)\(\ge\)a-\(\dfrac{b}{2}\)+b-\(\dfrac{1}{2}\)+1-\(\dfrac{a}{2}\)=\(\dfrac{a+b+1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
KH
Xem chi tiết
CM
Xem chi tiết
VH
Xem chi tiết
BN
Xem chi tiết
DT
Xem chi tiết
VV
Xem chi tiết
NT
Xem chi tiết
NQ
Xem chi tiết
QK
Xem chi tiết