Trời ko ai giải dùm hả
Thôi chắc mình tự trả lời cho mn tham khảo quá.
Áp dụng BĐT Cauchy dạng :\(\frac{x+y}{2}\ge\sqrt{x+y}\Leftrightarrow x+y\ge2\sqrt{xy}\)
Dấu "=" xảy ra khi : x = y
Ta có :
\(ab+\frac{a}{b}\ge2.\sqrt{ab.\frac{a}{b}}=2\sqrt{a^2}=2a\)
Tương tự : \(\frac{a}{b}+\frac{b}{a}\ge2\)
\(ab+\frac{b}{a}\ge2b\)
Cộng vế với vế ta được :
\(2\left(ab+\frac{a}{b}+\frac{b}{a}\right)\ge2\left(a+b+1\right)\)
\(\Leftrightarrow ab+\frac{a}{b}+\frac{b}{a}\ge a+b+1\left(đpcm\right)\)