Ôn tập phương trình bậc hai một ẩn

H24

Cho A = \(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\) và B = \(\frac{1}{\sqrt{x}-1}\)

1) Rút gọn biểu thức S = A - B

2) so sánh S với \(\frac{1}{3}\)

NL
30 tháng 5 2020 lúc 16:14

ĐKXĐ: \(x\ge0;x\ne1\)

\(S=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)

\(=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

\(\frac{1}{3}-S=\frac{1}{3}-\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{x-2\sqrt{x}+1}{3\left(x+\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}>0;\forall x>0;x\ne1\)

\(\Rightarrow S< \frac{1}{3}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
VH
Xem chi tiết
HA
Xem chi tiết
NH
Xem chi tiết
HN
Xem chi tiết
T8
Xem chi tiết
DN
Xem chi tiết
LT
Xem chi tiết
HP
Xem chi tiết