HA

Cho A =\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{99^2}\)

CMR A<1

PQ
8 tháng 4 2018 lúc 14:38

Ta có : 

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)

\(A< 1-\frac{1}{99}=\frac{98}{99}< 1\)

\(\Rightarrow\)\(A< 1\) ( đpcm ) 

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

Bình luận (0)
AK
8 tháng 4 2018 lúc 14:37

Ta có     : \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)

                \(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

                        ....

              \(\frac{1}{99^2}< \frac{1}{98.99}=\frac{1}{98}-\frac{1}{99}\)

\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{99^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\)\(\frac{1}{98}-\frac{1}{99}\)

\(\Rightarrow A< 1-\frac{1}{99}\)

\(\Rightarrow A< 1\)

Tham khảo nha !!! 

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
CB
Xem chi tiết
HA
Xem chi tiết
MK
Xem chi tiết
TH
Xem chi tiết
NB
Xem chi tiết
NL
Xem chi tiết
NB
Xem chi tiết
H24
Xem chi tiết