Ta có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)
\(A< 1-\frac{1}{99}=\frac{98}{99}< 1\)
\(\Rightarrow\)\(A< 1\) ( đpcm )
Vậy \(A< 1\)
Chúc bạn học tốt ~
Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
....
\(\frac{1}{99^2}< \frac{1}{98.99}=\frac{1}{98}-\frac{1}{99}\)
\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{99^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\)\(\frac{1}{98}-\frac{1}{99}\)
\(\Rightarrow A< 1-\frac{1}{99}\)
\(\Rightarrow A< 1\)
Tham khảo nha !!!