TB

Cho A = \(\dfrac{2}{1.5}+\dfrac{3}{5.11}+\dfrac{4}{11.19}+\dfrac{5}{19.29}+\dfrac{6}{29.41}\) 

       B = \(\dfrac{1}{1.4}+\dfrac{2}{4.10}+\dfrac{3}{10.19}+\dfrac{4}{19.31}\) 

Chứng tỏ rằng A > B

AH
12 tháng 5 2021 lúc 23:34

Lời giải:

\(2A=\frac{4}{1.5}+\frac{6}{5.11}+\frac{8}{11.19}+\frac{10}{19.29}+\frac{12}{29.41}\)

\(=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{11}+\frac{1}{11}-\frac{1}{19}+...+\frac{1}{29}-\frac{1}{41}=1-\frac{1}{41}=\frac{40}{41}\)

\(\Rightarrow A=\frac{20}{21}\)

\(3B=\frac{3}{1.4}+\frac{6}{4.10}+\frac{9}{10.19}+\frac{12}{19.31}=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{10}+\frac{1}{10}-\frac{1}{19}+\frac{1}{19}-\frac{1}{31}\)

\(=1-\frac{1}{31}=\frac{30}{31}\)

\(\Rightarrow B=\frac{10}{31}=\frac{20}{62}<\frac{20}{41}\)

Do đó $A>B$

Bình luận (1)

Các câu hỏi tương tự
TB
Xem chi tiết
NH
Xem chi tiết
TQ
Xem chi tiết
Xem chi tiết
KJ
Xem chi tiết
JR
Xem chi tiết
Xem chi tiết
LT
Xem chi tiết
HN
Xem chi tiết