a chia hết cho b => a = b.m (m \(\in\) N)
a chia hết cho c => a = c.n (n \(\in\) N)
=> b.m = c.n => m = \(\frac{c.n}{b}\). Vì (c;b) = 1 m là số tự nhiên nên n chia hết cho b
=> n = b.q (q \(\in\) N)
=> a = c.n = c.b.q => a chia hết cho b.c
a chia hết cho b => a = bm (m \(\in\) N)
a chia hết cho c => a = cn (n \(\in\) N)
Vậy bm = cn. Do đó n = \(\frac{bm}{c}\)
Mà ƯCLN(b ; c) = 1 và n \(\in\) N nên m chia hết cho c
=> m = ck (k ∈ N)
=> a = bm = bck
Vậy a chia hết cho b.c