H24

Cho a + c = 2b và 2bd = c(b+d) ; b,d \(\ne\)0 CMR :\(\frac{a}{b}=\frac{c}{d}\)

KS
29 tháng 12 2019 lúc 17:33

giải

Ta có : \(\hept{\begin{cases}2bd=c\left(b+d\right)\\a+c=2b\end{cases}}\)

\(\Rightarrow d\left(a+c\right)=c.\left(b+d\right)\)

\(\Rightarrow\frac{c}{d}=\frac{a+c}{b+d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{c}{d}=\frac{a+c}{b+d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\) 

Chúc bạn hoc tốt !!!

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NT
Xem chi tiết
H24
Xem chi tiết
BA
Xem chi tiết
DS
Xem chi tiết
CT
Xem chi tiết
ND
Xem chi tiết
TD
Xem chi tiết
NT
Xem chi tiết
BB
Xem chi tiết