\(a-b=1\Rightarrow\left(a-b\right)^2=1\Rightarrow a^2-2ab+b^2=1.\)
Thay a2 + b2 = 5 vào ta có:
\(5-2ab=1\Rightarrow2ab=4\Rightarrow ab=2\)(*)
Ta lại có: \(\left(a+b\right)^2=a^2+b^2+2ab=5+2\cdot2=9\)(**)
Vậy ab = 2; và (a + b)2 = 9.
\(a-b=1\Rightarrow\left(a-b\right)^2=1\Rightarrow a^2-2ab+b^2=1.\)
Thay a2 + b2 = 5 vào ta có:
\(5-2ab=1\Rightarrow2ab=4\Rightarrow ab=2\)(*)
Ta lại có: \(\left(a+b\right)^2=a^2+b^2+2ab=5+2\cdot2=9\)(**)
Vậy ab = 2; và (a + b)2 = 9.
Tính giá trị biểu thức:
a) M = (7 – m)( m 2 + 7m + 49) – (64 – m 3 ) tại m = 2017;
b*) N = 8 a 3 – 27 b 3 biết ab = 12 và 2a – 3b = 5;
c) K = a 3 + b 3 + 6 a 2 b 2 (a + b) + 3ab( a 2 + b 2 ) biết a + b = 1.
cho a,b,c là độ dài 3 cạnh tam giác.
a)a2/b2+b2/a2≥ a/b+b/a
b)a2/b+b2/a+c2/a≥ a+b+c
c)a2/(b+c)+b2/(a+c)+c2/(a+b)≥ (a+b+c)/2
Cho a>b>0 và a-b=7 và ab=60. Không tính a,b hãy tính a2-b2 và a4+b4
Bài 1:Cho a+b=5 và a.b=-6 Tính:
a) a.(4a+b)+4b
b) a2+b2
c) a4+b4
Bài 2: 2a-b=5 và a.b=3
a) a.(b-2)+b
b) 4.a2+b2
Để tính giá trị biểu thức 20212 – 212 theo phương pháp dùng hằng đẳng thức thì áp dụng hằng đẳng thức nào sau đây?
A. (A – B)2 = A2 – 2AB + B2
B. (A + B)2 = A2 + 2AB + B2
C. A2 – B2 = (A + B)(A – B)
D. A3 – B3 = (A – B)(A2 + AB + B2)
Cho a+b+c=9 và a2+b2+c2=53. tính ab+bc+ac
CMR
a)(a-1).(a-2)+(a-3).(a+4)-(2a2+5a-34)=-7a+24
b) (a-b).(a2+ab+b2)-(a+b).(a2-ab-b2)=-2b3
Chứng minh rằng: (a + b)( a 2 – ab + b 2 ) + (a – b)( a 2 + ab + b 2 ) = 2 a 3
a, cho a=+b+c =1; a,b,c dương
tìm GTNN: A= a/b2+1 + b/c2+1 + c/a2+1
b, cho a,b,c dương có tổng =2
tìm GTNN; B= a/ab+2c + b/bc+2a + c/ca+2b
c, cho a,b,c dương và a+b+c<1
tìm GTNN: C= 1/a2+2bc + 1/ b2+2ac + 1/c2+2ab
Cho biểu thức D = a ( b 2 + c 2 ) – b ( c 2 + a 2 ) + c ( a 2 + b 2 ) – 2 a b c . Phân tích D thành nhân tử và tính giá trị của C khi a = 99; b = -9; c = 1.
A. D = (a – b)(a + c)(c – b); D = 90000
B. D = (a – b)(a + c)(c – b); D = 108000
C. D = (a – b)(a + c)(c + b); D = -86400
D. D = (a – b)(a – c)(c – b); D = 105840