\(\left(a^2+b^2\right)\left(1^2+1^2\right)>=\left(a+b\right)^2\)(bđt bunhiacopxki) dấu = xảy ra khi a=b
\(\Rightarrow2\left(a^2+b^2\right)>=\left(a+b\right)^2\Rightarrow2\cdot2\left(a^2+b^2\right)=4\left(a^2+b^2\right)>=2\left(a+b\right)^2\)
\(\Rightarrow\frac{a^2+b^2}{2}>=\frac{\left(a+b\right)^2}{4}=\left(\frac{a+b}{2}\right)^2\)
vậy \(\frac{a^2+b^2}{2}>=\left(\frac{a+b}{2}\right)^2\)dấu = xảy ra khi a=b
Đúng 0
Bình luận (0)