\(1=tan\left(\dfrac{\pi}{4}\right)=tan\left(a+b\right)=\dfrac{tana+tanb}{1-tana.tanb}\)
\(\Rightarrow tana+tanb=1-tana.tanb\)
\(\Rightarrow tana+tanb+tana.tanb=1\)
Do đó:
\(M=1+tana+tanb+tana.tanb=1+1=2\)
\(1=tan\left(\dfrac{\pi}{4}\right)=tan\left(a+b\right)=\dfrac{tana+tanb}{1-tana.tanb}\)
\(\Rightarrow tana+tanb=1-tana.tanb\)
\(\Rightarrow tana+tanb+tana.tanb=1\)
Do đó:
\(M=1+tana+tanb+tana.tanb=1+1=2\)
Cho A, B, C là 3 góc nhọn của tam giác ABC. Chứng minh:
a) \(tanA+tanB+tanC=tanA.tanB.tanC\)
Tính min P với \(P=tanA+tanB+tanC\)
b) \(tan\left(\dfrac{A}{2}\right).tan\left(\dfrac{B}{2}\right)+tan\left(\dfrac{B}{2}\right)tan\left(\dfrac{C}{2}\right)+tan\left(\dfrac{C}{2}\right).tan\left(\dfrac{A}{2}\right)=1\)
Tìm min T với \(T=tan\left(\dfrac{A}{2}\right)+tan\left(\dfrac{B}{2}\right)+tan\left(\dfrac{C}{2}\right)\)
Chứng minh rằng:
a) \(sin\left(a+b\right).sin\left(a-b\right)=sin^2a-sin^2b=cos^2b-cos^2a\)
b) \(4sin\left(x+\dfrac{\Pi}{3}\right).sin\left(x-\dfrac{\Pi}{3}\right)=4sin^2x-3\)
c) \(sin\left(x+\dfrac{\Pi}{4}\right)-sin\left(x-\dfrac{\Pi}{4}\right)=\sqrt{2}cosx\)
d) \(\dfrac{1}{sin10^0}-\dfrac{\sqrt{3}}{cos10^0}=4\)
Tính giá trị biểu thức:
\(P=\left[Tan\dfrac{17\Pi}{4}+Tan\left(\dfrac{7\Pi}{2}-x\right)\right]^2+\left[Cot\dfrac{13\Pi}{4}+Cot\left(7\Pi-x\right)\right]^2\)
Tính \(\cos\left(\dfrac{28\pi}{3}\right)+\sin\left(\dfrac{37\pi}{6}\right)+\tan\left(-\dfrac{13\pi}{4}\right)\)
Đơn giản các biểu thức sau:
G = \(cos\left(\alpha-5\pi\right)+sin\left(-\dfrac{3\pi}{2}+\alpha\right)-tan\left(\dfrac{\pi}{2}+\alpha\right).cot\left(\dfrac{3\pi}{2}-\alpha\right)\)
H = \(cot\left(\alpha-2\pi\right).cos\left(\alpha-\dfrac{3\pi}{2}\right)+cos\left(\alpha-6\pi\right)-2sin\left(\alpha-\pi\right)\)
Cho \(sina=\dfrac{3}{5},cosb=-\dfrac{5}{13}\)và \(\dfrac{\pi}{2}< a,b< \pi\)
Tính \(cos\dfrac{a}{2};sin\dfrac{b}{2};tan\left(a+b\right);sin\left(a-b\right)\)
GIÚP VỚI MÌNH ĐANG CẦN GẤP
Rút gọn:
C= \(sin^2\dfrac{\pi}{3}+sin^2\dfrac{5\pi}{6}+sin^2\dfrac{\pi}{9}+sin^2\dfrac{11\pi}{18}+sin^2\dfrac{13\pi}{18}+sin^2\dfrac{2\pi}{9}\)
D=\(cos\left(x-\dfrac{\pi}{3}\right).cos\left(x+\dfrac{\pi}{4}\right)+cos\left(x+\dfrac{\pi}{6}\right).cos\left(x+\dfrac{3\pi}{4}\right)\)
Cho \(\alpha\) , \(\beta\in\left(0;\dfrac{\pi}{2}\right)\) và sin \(\alpha\) = \(\dfrac{1}{\sqrt{5}}\) ; Cos \(\alpha\) = \(\dfrac{1}{\sqrt{10}}\) . Tính Cos \(\left(\alpha+\beta\right)\)
Cho sin a = \(\dfrac{1}{\sqrt{3}}\) với 0 < a < \(\dfrac{\pi}{2}\) , khi đó giá trị \(\cos\left(a+\dfrac{\pi}{3}\right)\) bằng ?