Cho A, B, C là 3 góc nhọn của tam giác ABC. Chứng minh:
a) \(tanA+tanB+tanC=tanA.tanB.tanC\)
Tính min P với \(P=tanA+tanB+tanC\)
b) \(tan\left(\dfrac{A}{2}\right).tan\left(\dfrac{B}{2}\right)+tan\left(\dfrac{B}{2}\right)tan\left(\dfrac{C}{2}\right)+tan\left(\dfrac{C}{2}\right).tan\left(\dfrac{A}{2}\right)=1\)
Tìm min T với \(T=tan\left(\dfrac{A}{2}\right)+tan\left(\dfrac{B}{2}\right)+tan\left(\dfrac{C}{2}\right)\)
Câu a)
Ta sử dụng 2 công thức:
\(\bullet \tan (180-\alpha)=-\tan \alpha\)
\(\bullet \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha.\tan \beta}\)
Áp dụng vào bài toán:
\(\text{VT}=\tan A+\tan B+\tan C=\tan A+\tan B+\tan (180-A-B)\)
\(=\tan A+\tan B-\tan (A+B)=\tan A+\tan B-\frac{\tan A+\tan B}{1-\tan A.\tan B}\)
\(=(\tan A+\tan B)\left(1+\frac{1}{1-\tan A.\tan B}\right)=(\tan A+\tan B).\frac{-\tan A.\tan B}{1-\tan A.\tan B}\)
\(=-\tan A.\tan B.\frac{\tan A+\tan B}{1-\tan A.\tan B}=-\tan A.\tan B.\tan (A+B)\)
\(=\tan A.\tan B.\tan (180-A-B)\)
\(=\tan A.\tan B.\tan C=\text{VP}\)
Do đó ta có đpcm
Tam giác $ABC$ có ba góc nhọn nên \(\tan A, \tan B, \tan C>0\)
Áp dụng BĐT Cauchy ta có:
\(P=\tan A+\tan B+\tan C\geq 3\sqrt[3]{\tan A.\tan B.\tan C}\)
\(\Leftrightarrow P=\tan A+\tan B+\tan C\geq 3\sqrt[3]{\tan A+\tan B+\tan C}\)
\(\Rightarrow P\geq 3\sqrt[3]{P}\)
\(\Rightarrow P^3\geq 27P\Leftrightarrow P(P^2-27)\geq 0\)
\(\Rightarrow P^2-27\geq 0\Rightarrow P\geq 3\sqrt{3}\)
Vậy \(P_{\min}=3\sqrt{3}\). Dấu bằng xảy ra khi \(\angle A=\angle B=\angle C=60^0\)
Câu b)
Ta sử dụng 2 công thức chính:
\(\bullet \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha.\tan \beta}\)
\(\bullet \tan (90-\alpha)=\frac{1}{\tan \alpha}\)
Áp dụng vào bài toán:
\(\text{VT}=\tan \frac{A}{2}.\tan \frac{B}{2}+\tan \frac{B}{2}.\tan \frac{C}{2}+\tan \frac{C}{2}.\tan \frac{A}{2}\)
\(=\tan \frac{A}{2}.\tan \frac{B}{2}+\tan \frac{C}{2}(\tan \frac{A}{2}+\tan \frac{B}{2})\)
\(=\tan \frac{A}{2}.\tan \frac{B}{2}+\tan (90-\frac{A+B}{2})(\tan \frac{A}{2}+\tan \frac{B}{2})\)
\(=\tan \frac{A}{2}.\tan \frac{B}{2}+\frac{\tan \frac{A}{2}+\tan \frac{B}{2}}{\tan (\frac{A+B}{2})}\)
\(=\tan \frac{A}{2}.\tan \frac{B}{2}+\frac{\tan \frac{A}{2}+\tan \frac{B}{2}}{\frac{\tan \frac{A}{2}+\tan \frac{B}{2}}{1-\tan \frac{A}{2}.\tan \frac{B}{2}}}\)
\(=\tan \frac{A}{2}.\tan \frac{B}{2}+1-\tan \frac{A}{2}.\tan \frac{B}{2}=1=\text{VP}\)
Ta có đpcm.
Cũng giống phần a, ta biết do ABC là tam giác nhọn nên
\(\tan A, \tan B, \tan C>0\)
Đặt \(\tan A=x, \tan B=y, \tan C=z\). Ta có: \(xy+yz+xz=1\)
Và \(T=x+y+z\)
\(\Rightarrow T^2=x^2+y^2+z^2+2(xy+yz+xz)\)
Theo hệ quả quen thuộc của BĐT Cauchy:
\(x^2+y^2+z^2\geq xy+yz+xz\)
\(\Rightarrow T^2\geq 3(xy+yz+xz)=3\)
\(\Rightarrow T\geq \sqrt{3}\Leftrightarrow T_{\min}=\sqrt{3}\)
Dấu bằng xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\Leftrightarrow \angle A=\angle B=\angle C=60^0\)
Câu a)
Ta sử dụng 2 công thức:
∙tan(180−α)=−tanα∙tan(180−α)=−tanα
∙tan(α+β)=tanα+tanβ1−tanα.tanβ∙tan(α+β)=tanα+tanβ1−tanα.tanβ
Áp dụng vào bài toán:
VT=tanA+tanB+tanC=tanA+tanB+tan(180−A−B)VT=tanA+tanB+tanC=tanA+tanB+tan(180−A−B)
=tanA+tanB−tan(A+B)=tanA+tanB−tanA+tanB1−tanA.tanB=tanA+tanB−tan(A+B)=tanA+tanB−tanA+tanB1−tanA.tanB
=(tanA+tanB)(1+11−tanA.tanB)=(tanA+tanB).−tanA.tanB1−tanA.tanB=(tanA+tanB)(1+11−tanA.tanB)=(tanA+tanB).−tanA.tanB1−tanA.tanB
=−tanA.tanB.tanA+tanB1−tanA.tanB=−tanA.tanB.tan(A+B)=−tanA.tanB.tanA+tanB1−tanA.tanB=−tanA.tanB.tan(A+B)
=tanA.tanB.tan(180−A−B)=tanA.tanB.tan(180−A−B)
=tanA.tanB.tanC=VP=tanA.tanB.tanC=VP
Do đó ta có đpcm
Tam giác ABCABC có ba góc nhọn nên tanA,tanB,tanC>0tanA,tanB,tanC>0
Áp dụng BĐT Cauchy ta có:
P=tanA+tanB+tanC≥33√tanA.tanB.tanCP=tanA+tanB+tanC≥3tanA.tanB.tanC3
⇔P=tanA+tanB+tanC≥33√tanA+tanB+tanC⇔P=tanA+tanB+tanC≥3tanA+tanB+tanC3
⇒P≥33√P⇒P≥3P3
⇒P3≥27P⇔P(P2−27)≥0⇒P3≥27P⇔P(P2−27)≥0
⇒P2−27≥0⇒P≥3√3⇒P2−27≥0⇒P≥33
Vậy Pmin=3√3Pmin=33. Dấu bằng xảy ra khi ∠A=∠B=∠C=600