Ta có : 1/ (1+a+ab) +1/(1+b+bc) +1/(1+c+ca) =abc/ (abc+a+ab)+1/(1+b+bc)+ abc/(abc+abc^2+ba^2c^2)
=abc/(a(bc+1+b) +1(1+b+bc)+ abc/( ac(b+bc+abc)
=bc/(1+b+bx)+ 1/(1+b+bc)+b/(1+b+bc) =bc+1+b/1+b+bc= 1
Vậy S=1
Ta có : 1/ (1+a+ab) +1/(1+b+bc) +1/(1+c+ca) =abc/ (abc+a+ab)+1/(1+b+bc)+ abc/(abc+abc^2+ba^2c^2)
=abc/(a(bc+1+b) +1(1+b+bc)+ abc/( ac(b+bc+abc)
=bc/(1+b+bx)+ 1/(1+b+bc)+b/(1+b+bc) =bc+1+b/1+b+bc= 1
Vậy S=1
Cho 3 số a, b, c thỏa mãn: a.b.c=1. Tính S= \(\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ca}\)
Cho 3 số a,b,c thoả mãn a.b.c=1
Tnh tổng: \(S=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ca}\)
Cho a, b, c thỏa mãn a.b.c=1. Tính
S\(\frac{1}{1+a+ab}\)+\(\frac{1}{1+b+bc}\)+\(\frac{1}{1+c+ca}\)
Cho 3 số thực a,b,c thỏa mãn $\frac{a}{1+ab}$ =$\frac{b}{1+bc}$ =$\frac{c}{1+ca}$
Tính S=abc
cho ba số a,b,c thỏa mãn a.b.c=1
chứng minh\(\frac{1}{ab+a+1}+\frac{b}{bc+b+1}+\frac{1}{ac+c+1}=1\)
Cho a,b,c thỏa mãn a.b.c=2018
tính S= 2018/ab+2018a+2018 +b/bc+b+2018 +c/ac+c+1
Tìm x thuộc Z để B=2013x+1/2014x-2014 đạt GTLN
cho số a,b,c thỏa mãn : a.b.c= 1
chứng minh : \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\)
cho 3 số thực a,b,c đôi một phân biệt,thỏa mãn \(\frac{a}{1+ab}\) =\(\frac{b}{1+bc}\)=\(\frac{c}{1+ca}\)
Tính giá trị của M=a.b.c
Ai giúp mình với.
Cho 3 số a ; b ; c thỏa mãn a . b . c = 1. Tính :\(S=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ca}\)