Cho a,b,c thỏa mãn a+b+c= 3
CMR các phương trình sau ít nhất có 1 phương rình có 2 nghiệm phân biệt và 1 phương trình vô nghệm
x2 -2ax+b=0;
x2-2bx+c=0;
x2-2cx+a=0.
Cho các số thực a,b,c,d thỏa mãn \(a^2+b^2< 1\). CMR: phương trình \(\left(a^2+b^2-1\right)x^2-2\left(ac+bd-1\right)x+c^2+d^2-1=0\) luôn có 2 nghiệm.
1, cho R=(2căn(a) +3căn(b))/(căn(ab) +2căn(a)-3căn(b)-6) - (6- căn(ab))/(căn(ab) +2căn(a)+3căn(b)+6)
a, Rút gọn
b, cmr nếu R=(b+81)/(b-81) thì b/a là một số chia hết cho 3
2, Giải phương trình: a, 4x^2 +1/x^2 +7=8x + 4/x b,2x^2 + 2x +1 = căn(4x+1)
3, Hình vuông ABCD , AC giao BD tại E . một đường thẳng qua A cắt bc tại M; cắt CD tại N. Gọi K là giao điểm EM và BN. cmr: CK vuông góc với BN
4, cho a,b,c; c khác 0 biết 2 phương trình x^2 + ax + bc=o; x^2 + bx + ca=0 có 1 nghiệm chung duy nhất. cmr 2 nghiệm còn lại là 2 nghiệm của phương trình x^2+cx+ab=0
cho 3 số thực a,b,c khác 0 thoả mãn pt ax+c/x=b có nghiệm thực. cmr ít nhất một trong 2 phương trình ax+c/x=b-1 và ax+c/x=b+1 có nghiệm thực
Cho a,b,c là các số dương đôi một khác nhau sao cho a+b+c = 12. CMR trong 3 phương trình sau có 1 phương trình có nghiệm, một phương trình vô nghiệm:
\(x^2+ax+b=0\); \(x^2+bx+c=0\); \(x^2+cx+a=0\)
Cho a,b,c >0 thỏa mãn a+b+c=1. CMR:
\(P=\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ac}{b+ac}}+\sqrt{\frac{ab}{c+ab}}\le\frac{3}{2}\)
cho a,b,c> 0 thỏa mãn a+b+c=1 cmr:
\(\frac{3}{ab+bc+ac}+\frac{2}{a^2+b^2+c^2}>14\)
Cho a;b;c>0 thỏa mãn abc=1. CMR:
\(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ac+c+1\right)^2}\ge\frac{1}{a+b+c}\)
cho a,b,c là các số dương đôi một khác nhau có tổng là 12.CMR trong ba phương trình sau có một phương trình vô nghiệm 1 phương trình có nghiệm
(1) x2+ax+b=0
(2)x2+bx+c=0
(3)x2+cx+a=0