Cho các số thực dương a, b, c thoả mãn:
\(a\sqrt{1-b^2}+b\sqrt{1-c^2}+c\sqrt{1-a^2}=\dfrac{3}{2}\)
Cmr: \(a^2+b^2+c^2=\dfrac{3}{2}\)
1) Gỉai phương trình: (2x^2 +1)^3 + (2-5x)^3 = (2x^2 -5x +3)^3
2) Cho 3 số thực a, b, c đôi một khác nhau thoả mãn : a/b-c +b/c-a + c/a-b =0
CMR: a/(b-c)^2 +b/(c-a)2 +c/(a-c)^2 = 0
3) Tìm giá trị nhỏ nhất của biểu thức: M = x^2 + 5y^2 - 4xy +2x -8y +2018
. Cho 3 số thực a, b, c thỏa mãn \(a^3+b^3+c^3=3abc\),Tính giá trị của biểu thức
\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
Cho a, b, c \(\ne\) và \((a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})=1\)
Tính giá trị biểu thức: \(P=\left(a^{2018}-b^{2018}\right)\left(b^{2019}+c^{2019}\right)\left(c^{2020}-d^{2020}\right)\).
Cho các số thực a, b, c thoả mãn: \(a^3-b^2-b=b^3-c^2-c=c^3-a^2-a=\dfrac{1}{3}\). Chứng minh rằng: \(a=b=c\)
Cho a,b,c là 3 số thực dương thoả mãn \(\frac{1}{a+2}+\frac{3}{b+4}\le\frac{c+1}{c+3}\)
Tìm GTNN của biểu thức Q = (a+1)(b+1)(c+1)
Cho các số x, y, z thoả mãn: \(\left\{{}\begin{matrix}x+y+z=a\\\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{c}\\x^2+y^2+z^2=b^2\end{matrix}\right.\)
Tính \(P=x^3+y^3+z^3\) theo a, b, c.
Cho 3 số thực a,b,c dương và thỏa mãn: \(a^2+b^2+c^2=3\). Tìm GTNN của biểu thức: \(A=\dfrac{1}{\sqrt{1+8a^3}}+\dfrac{1}{\sqrt{1+8b^3}}+\dfrac{1}{\sqrt{1+8c^3}}\)
Cho 3 số thực dương a, b, c thoả mãn \(a+b+c\le\sqrt{3}\). Chứng minh rằng: \(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{3}{2}\)