cho a,b,c là độ dài 3 cạnh tam giác .
1.CMR : abc \(\ge\)( b + c - a ) ( a + c - b ) ( a + b - c )
2. \(\frac{1}{a+b},\frac{1}{b+c},\frac{1}{c+a}\) cũng là độ dài 3 cạnh của 1 tam giác.
Cho a,b,c là độ dài 3 cạnh tam giác ABC
Biết : (1+b/a)*(1+c/b)*(1+a/c)
CMR tam giác ABC đều
Cho a,b,c là độ dài 3 cạnh của 1 tam giác. CMR \(|\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}|< 1\)
Cho a,b,c là độ dài 3 cạnh của 1 tam giác.
Chứng minh rằng: 1/(a+b), 1/(a+c), 1/(b+c) cũng là dộ dài 3 cạnh của 1 tam giác
Cho a,b,c là độ dài 3 cạnh của một tam giác. Chứng minh \(\dfrac{1}{a+b-c}\)+\(\dfrac{1}{b+c-a}\)+\(\dfrac{1}{c+a-b}\)≥\(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\)
Mọi người giúp mình nhé
Cho a,b,c là độ dài 3 cạnh của 1 tam giác và x,y,z là độ dài các đường phân giác trong của các góc đối diện với các cạnh đó.
CMR: 1/x + 1/y + 1/z > 1/a + 1/b + 1/c
Bài 1:Cho a=4m+8n+9p
b=m+4n+4p
c=4m+7n+8p
Với m,n,p là độ dài 3 cạnh của 1 tam giác vuông(p là cạnh huyền)
CMR a,b,c cũng là độ dài 3 cạnh của 1 tam giác vuông
Cho a,b,c là độ dài 3 cạnh của 1 tam giác
Chứng minh: 1/(a+b-c)+1/(b+c-a)+1/(c+a-b)>=1/a+1/b+1/c
Cho a,b,c là độ dài ba cạnh của một tam giác và p là nửa chu vi của tam giác. CMR: \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\). Dấu "=" xảy ra khi nào?