NH

Cho a, b, c là độ dài 3 cạnh của 1 tam giác

CMR : ( a + b + c )( 1/ a + 1/b + 1/c ) > 6

Giúp mk với

LC
21 tháng 4 2019 lúc 21:19

Đặt \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

           \(=\left(a+b+c\right).\frac{1}{a}+\left(a+b+c\right).\frac{1}{b}+\left(a+b+c\right).\frac{1}{c}\)

           \(=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)

            \(=\frac{a}{a}+\frac{b+c}{a}+\frac{b}{b}+\frac{a+c}{b}+\frac{c}{c}+\frac{a+b}{c}\)

           \(=1+\frac{b+c}{a}+1+\frac{a+c}{b}+1+\frac{a+b}{c}\)

         \(=3+\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)

Ta có: trong 1 tam giác thì tổng độ dài 2 cạnh bao giờ cũng lớn hơn cạnh còn lại ( bất đẳng thức tam giác )

\(\Rightarrow\hept{\begin{cases}b+c>a\\a+c>b\\a+b>c\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{b+c}{a}>1\\\frac{a+c}{b}>1\\\frac{a+b}{c}>1\end{cases}}\)

\(\Rightarrow A>3+1+1+1\)

\(\Rightarrow A>6\left(đpcm\right)\)

Bình luận (0)

Các câu hỏi tương tự
OT
Xem chi tiết
NP
Xem chi tiết
OD
Xem chi tiết
HT
Xem chi tiết
PL
Xem chi tiết
NA
Xem chi tiết
NN
Xem chi tiết
NP
Xem chi tiết
NC
Xem chi tiết