Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho a,b,c la cac so thuc duong:Tim GTLN cua bieu thuc P= (a^2b+b^2c+c^2a);(a^2+b^2+c^2)- 1:3(a^2+b^2+c^2)
cho a,b,c la cac so thuc duong. chung minh rang 2a/(b+c)+2b/(c+a)+2c/(a+b)>=((a-b)^2+(b-c)^2+(c-a)^2)/(a+b+c)^2
cho a,b laf cac so thuc duong tm a+b=2 tim min
\(\frac{2a^2+3b^2}{2a^3+3b^3}\)+\(\frac{2b^2+3a^2}{2b^3+3a^3}\)
Cho a, b,c : abc = 1. Chứng minh:
\(\dfrac{a^2b^2}{2a^2+b^2+3a^2b^2}+\dfrac{b^2c^2}{2b^2+c^2+3b^2c^2}+\dfrac{c^2a^2}{2c^2+a^2+3a^2c^2}\le\dfrac{1}{2}\)
cho a,b,c >=0 tm abc=1
cmr \(\frac{1}{2a^3+3a+2}\) +\(\frac{1}{2b^3+3b+2}+\frac{1}{2c^3+3c+2}\ge\frac{3}{7}\)
CMR: Với mọi a;b;c>0
\(\frac{2b+3c}{a+2b+3c}+\frac{2c+3a}{b+2c+3a}+\frac{2a+3b}{c+2a+3b}\ge\frac{5}{2}\)
Cho a, b, c > 0. CMR: \(a^3b^2+b^3c^2+c^3a^2>a^2b^3+b^2c^3+c^2a^3\)
Cho a,b,c là các số dương thỏa mãn a+b+c=3. CMR : a^2b + b^2c + c^2a >= 9a^2b^2c^2/(1+2a^2b^2c^2
a,b,c>0.CMR a^2/(2a+b)(2a+c)+b^2/(2b+c)(2b+a)+c^2/(2c+a)(2c+b) >1/3