\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow\frac{ab+bc+ac}{abc}=1\Leftrightarrow ab+bc+ac=abc\)
kết hợp gt: a+b+c=1
\(\Rightarrow abc-ab-ac-bc+a+b+c-1=0\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\left(đpcm\right)\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow\frac{ab+bc+ac}{abc}=1\Leftrightarrow ab+bc+ac=abc\)
kết hợp gt: a+b+c=1
\(\Rightarrow abc-ab-ac-bc+a+b+c-1=0\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\left(đpcm\right)\)
Cho a,b,c là các số thực thỏa mãn ab + bc + ac = abc và a + b + c = 1 .Chứng minh rằng (a - 1) (b - 1) (c - 1) = 0
cho các số thực a,b,c khác 0 thỏa mãn 1/a+1/b+1/c=1/a+b+c chứng minh rằng 1/a^7 +1/b^7 + 1/c^7 = 1/a^7+b^7+c^7
cho a,b,c là các số thực thỏa mãn : ab+bc+ca = abc
và a+b+c =1.chứng minh rằng : (a-1).(b-1).(c-1)=0
các bạn giúp mình nhanh với
Cho các số thực a, b, c thỏa mãn a+b+c=3 và 1/a + 1/b + 1/c = 1/3. Chứng minh rằng trong 3 số a, b, c có ít nhất 1 số bằng 3.
Cho các số thực a, b, c thỏa mãn a+b+c = 3 và 1/a + 1/b + 1/c = 1/3. Chứng minh rằng trong 3 số a, b, c có ít nhất 1 số bằng 3.
Cho các số thực a, b, c thỏa mãn a+b+c=3 và 1/a + 1/b + 1/c = 1/3. Chứng minh rằng trong 3 số a, b, c có ít nhất 1 số bằng 3.
Cho a,b,c là các số thực dương thỏa mãn a + b + c = 3 Chứng minh rằng : \(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\le1\)
Cho các số thực dương a, b, c thỏa mãn a + b + c = 3. Chứng minh rằng abc (1 + a^2)(1 + b^2)(1 + c^2) ≤ 8