H24

Cho a, b, c là các số thực dương thỏa mãn \(a,b,c\ge1\)\(a^2+b^2+c^2=4\)

Chứng minh rằng: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\frac{9}{2\left(\sqrt{a^2-1}+\sqrt{b^2-1}+\sqrt{c^2-1}\right)}\)

TL
25 tháng 8 2020 lúc 16:01

Đặt \(\sqrt{a^2-1}=x;\sqrt{b^2-1}=y;\sqrt{c^2-1}=z\)ta viết lại thành x2+y2+z2=1.Bất đẳng thức cần chứng minh tương đương với

\(\left(x+y+z\right)\left(\frac{1}{\sqrt{x^2+1}}+\frac{1}{\sqrt{y^2+1}}+\frac{1}{\sqrt{z^2+1}}\right)\le\frac{9}{2}\)

Theo bất đẳng thức Cauchy-Schwarz ta có

\(\frac{x}{\sqrt{x^2+1}}+\frac{y}{\sqrt{y^2+1}}+\frac{z}{\sqrt{z^2+1}}\le\sqrt{\Sigma\frac{3x^2}{2x^2+y^2+z^2}}\le\sqrt{\frac{3}{4}\Sigma\left(\frac{x^2}{x^2+y^2}+\frac{x^2}{x^2+z^2}\right)}=\frac{3}{2}\)

\(\Leftrightarrow\)\( {\displaystyle \displaystyle \sum } \)\(\frac{y+z}{\sqrt{x^2+1}}\le\sqrt{\Sigma\frac{3\left(y+z\right)^2}{2x^2+y^2+z^2}}\le\sqrt{3\Sigma\left(\frac{y^2}{x^2+y^2}+\frac{z^2}{x^2+z^2}\right)}=3\)

Dấu đẳng thức xảy ra khi \(a=b=c=\frac{2}{\sqrt{3}}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
ND
Xem chi tiết
TN
Xem chi tiết
LD
Xem chi tiết
KN
Xem chi tiết
DT
Xem chi tiết
TQ
Xem chi tiết
H24
Xem chi tiết
KA
Xem chi tiết
KN
Xem chi tiết