Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho a, b, c là các số thỏa mãn điều kiện : \(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\). Khi đó giá trị của biểu thức P = \(\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2.\left(a+3c\right)^3}\)là
Cho các số a,b,c thỏa mãn điều kiện \(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\)
Khi đó giá trị biểu thức \(P=\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2.\left(a+3c\right)^3}\)
Cho các số thực dương a, b, c thỏa mãn điều kiện: a^2+b^2+c^2 = 1. Tính max của biểu thức: A = (1+2a)(1+2bc)
1) cho a,b,c la các số thỏa mãn điều kiện \(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\)tính \(\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2\left(a+3c\right)^3}\)
Cho 3 số a, b, c khác 0 thỏa mãn điều kiện:
\(\frac{2a+b+c}{a}=\frac{a+2b+c}{b}=\frac{a+b+2c}{c}\)
Cho a,b,c là các số thỏa mãn điều kiện \(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\). Khi đó \(\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2\left(a+3c\right)^3}=...\) Chỉ mình cách làm luôn nhé
cho 3 số a, b, c khác 0 thỏa mãn điều kiện 2a+b+c/a=a+2b+c/b=a+b+2c/c Tính A=a+b/c+b+c/a+c+a/b
Giúp mk nha! Mk thanks trc ^_^
1.Cho các số a, b, c thỏa mãn điều kiện: \(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\)
Tính \(\frac{\left(5b+4a\right)^3}{\left(5b+4c\right)^2.\left(a+3c\right)}\)
Cho các số a, b, c thỏa mãn điều kiện :
\(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\)
Tính \(\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2\left(a+3c\right)}\)