\(P=\left(a+b+c\right)+\left(a+\frac{4}{a}\right)+\left(3b+\frac{12}{b}\right)+\left(5c+\frac{20}{c}\right)\)
Theo BĐT AM-GM và gt ta có: \(P\ge6+4+12+20=42\).
Đẳng thức xảy ra khi \(a=b=c=2\)
Vậy \(minP=42\)
\(P=\left(a+b+c\right)+\left(a+\frac{4}{a}\right)+\left(3b+\frac{12}{b}\right)+\left(5c+\frac{20}{c}\right)\)
Theo BĐT AM-GM và gt ta có: \(P\ge6+4+12+20=42\).
Đẳng thức xảy ra khi \(a=b=c=2\)
Vậy \(minP=42\)
Cho 3 số thực dương a,b,c thỏa mãn a+2b+3c ≥ 20.
Tìm GTNN của biểu thức A=a+b+c+3/a+9/2b+4/c
Cho a, b là các số dương thỏa mãn a + b + 2ab = 12. Tìm GTNN của biểu thức A = a + b.
Cho a, b là các số dương thỏa mãn a + b + 2ab = 12. Tìm GTNN của biểu thức A = a + b.
cho các số thực dương a,b,c thoả mãn: 2/b = 1/a + 1/c. Tìm GTNN của biểu thức: P= \(\dfrac{a+b}{2a-b}\) + \(\dfrac{c+b}{2c-b}\)
Cho các số thực dương a,b,c thỏa mãn \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\)
Tìm GTNN của biểu thức: \(P=\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\)
1.Cho a,b,c,dương thỏa mãn a+b+c=1.Tìm GTNN của P=a3+b3+1/4c3
2.Cho a,b,c ko âm thoả mãn a+b+c=1.CMR \(ab+bc+ca-2abc\le\frac{2}{27}\)
3.Cho a,b là các số dương thỏa mãn ab=1.Tìm GTNN cảu biểu thức \(F=\left(2a+2b-3\right)\left(a^3+b^3\right)+\frac{7}{\left(a+b\right)^2}\)
Cho các số thực dương a, b, c thỏa mãn a ≥ b + c. Tìm GTNN của biểu thức:
P = \(\dfrac{a}{b+c}+\dfrac{b}{a+2c}+\dfrac{c}{a+2b}\)
Cho a, b, c là các số thực dương thỏa mãn a + b = ab. Tìm GTNN của biểu thức :
\(P=\frac{1}{a^2+2a}+\frac{1}{b^2+2b}+\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)
Cho a, b là các số thực dương thỏa mãn a + b = 4ab
Tìm GTNN của biểu thức \(P=\frac{a}{1+4b^2}+\frac{b}{1+4a^2}\)