Ôn tập chương IV

SK

Cho a, b, c là các số dương. Chứng minh rằng :

                      \(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge6\)

NA
24 tháng 4 2017 lúc 17:10

Ta có a,b,c > 0

Áp dụng bất đẳng thức Cô-si : \(a+b\ge2\sqrt{ab}\)

\(a+b+c\ge3\sqrt[3]{abc}\)

Ta được: Vế trái \(\ge\dfrac{2\sqrt{ab}}{c}+\dfrac{2\sqrt{bc}}{a}+2\dfrac{\sqrt{ac}}{b}\)

\(\ge3\sqrt[3]{\dfrac{2\sqrt{ab}\times2\sqrt{bc}\times2\sqrt{ac}}{abc}}\)

\(\ge3\sqrt[3]{\dfrac{8\sqrt{a^2b^2c^2}}{abc}\ge6}\) (Đpcm)

Vậy: \(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge6\)

Bình luận (0)
XT
26 tháng 4 2017 lúc 18:00

Đặt A=\(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{a+c}{b}\)

\(=\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{a}+\dfrac{a}{b}\right)+\left(\dfrac{c}{b}+\dfrac{b}{c}\right)\)

Do a,b,c dương.Áp dụng bất đăng thức côsi cho 2 số dương ta có:

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ba}}=2\)

\(\dfrac{b}{c}+\dfrac{c}{b}\ge2\sqrt{\dfrac{bc}{cb}}=2\)

\(\dfrac{c}{a}+\dfrac{a}{c}\ge2\sqrt{\dfrac{ca}{ac}}=2\)

Dấu "=" xảy ra khi và chỉ khi:

\(\dfrac{a}{b}=\dfrac{b}{a};\dfrac{b}{c}=\dfrac{c}{b};\dfrac{c}{a}=\dfrac{a}{c}\Leftrightarrow a=b=c\)

=> A\(\ge6\) ,dấu "=" xảy ra tại a=b=c(đpcm)

Bình luận (0)
TT
6 tháng 4 2017 lúc 20:34

Vế trái bất đẳng thức có thể viết là:

a+bc+b+ca+c+aba+bc+b+ca+c+ab

= (ac+ca)+(bc+cb)+(ba+ab)(ac+ca)+(bc+cb)+(ba+ab)

Ta biết với a, b, c > 0: với mỗi biểu thức trong ngoặc () không nhỏ hơn 2.

Vậy a+bc+b+ca+c+ab≥6


Bình luận (0)