Có: \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{c}\Leftrightarrow 2ab-2bc-2ca=0\)
\(\Rightarrow A=\sqrt{a^2+b^2+c^2+2ab-2bc-2ca}=\sqrt{(a+b-c)^2}=|a+b-c|\)
⇒ A là số hữu tỉ
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Có: \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{c}\Leftrightarrow 2ab-2bc-2ca=0\)
\(\Rightarrow A=\sqrt{a^2+b^2+c^2+2ab-2bc-2ca}=\sqrt{(a+b-c)^2}=|a+b-c|\)
⇒ A là số hữu tỉ
Cho 3 số hữu tỉ a,b,c tm \(\dfrac{1}{c}=\dfrac{1}{a}+\dfrac{1}{b}\)
CMR: \(\sqrt{a^2+b^2+c^2}\) là số hữu tỉ
Cho a, b, c \(\ne0\) và a+b+c=0. CMR :
\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\) là số hữu tỉ
cho a,b,c là những số hữu tỉ khác 0 và a=b+c
chứng minh rằng : \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\) là một số hữu tỉ
Bài 1 :
a) Cho 3 số hữu tỉ a,b,c thoả mãn : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\). Chứng minh rằng : \(A\text{=}\sqrt{a^2+b^2+c^2}\) là số hữu tỉ.
b) Cho 3 số x,y,z đôi một khác nhau . Chứng minh rằng : \(B\text{=}\sqrt{\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{\left(y-z\right)^2}+\dfrac{1}{\left(z-x\right)^2}}\) là một số hữu tỉ.
Cho 2 số hữu tỉ a, b khác nhau và khác 0. Chứng minh rằng số \(A=\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a-b\right)^2}}\) là số hữu tỷ
Cho các số thực dương a+b+c=\(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\\\).CMR
\(\dfrac{\sqrt{a}}{1+a}+\dfrac{\sqrt{b}}{1+b}+\dfrac{\sqrt{c}}{1+c}=\dfrac{2}{\sqrt{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Cho ba số hữu tỉ a, b, c thỏa mãn: \(a.b.c=1\) và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Chứng minh rằng biểu thức \(A=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\) có giá trị bằng bình phương của một số hữu tỉ.
Cho các số a,b,c>0 và a+b+c\(\le\dfrac{3}{2}\).Tìm GTNN của biểu thức
\(Q=\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{c^2}}+\sqrt{c^2+\dfrac{1}{a^2}}\)
Biết \(a,b,c\) là các số thực không âm thỏa mãn \(a^2+b^2+c^2=a+b+c\). CMR: \(\dfrac{a+1}{\sqrt{a^5+a+1}}+\dfrac{b+1}{\sqrt{b^5+b+1}}+\dfrac{c+1}{\sqrt{c^5+c+1}}\ge3\)