NH

Cho a, b, c dương và a + b + c = 1. CMR: \(2\left(a^3+b^3+c^3\right)+3abc\ge ab+bc+ca\)

H24
9 tháng 2 2020 lúc 8:34

Đặt \(a+b+c=3u;ab+bc+ca=3v^2;abc=w^3\)

BĐT \(\Leftrightarrow\) \(54u^3-54uv^2+9w^3\ge3v^2\)  

\(\Leftrightarrow54u^3-63uv^2+9w^3\ge0\)

\(\Leftrightarrow9\left(w^3+3u^3-4uv^2\right)+27u\left(u^2-v^2\right)\ge0\)

Đúng theo BĐT Schur bậc 3: \(w^3+3u^3\ge4uv^2\) và BĐT quen thuộc: \(u^2\ge v^2\)

P/s: Ko chắc ạ..

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
LC
Xem chi tiết
DK
Xem chi tiết
KN
Xem chi tiết
NP
Xem chi tiết
NT
Xem chi tiết
MA
Xem chi tiết