Đặt \(a+b+c=3u;ab+bc+ca=3v^2;abc=w^3\)
BĐT \(\Leftrightarrow\) \(54u^3-54uv^2+9w^3\ge3v^2\)
\(\Leftrightarrow54u^3-63uv^2+9w^3\ge0\)
\(\Leftrightarrow9\left(w^3+3u^3-4uv^2\right)+27u\left(u^2-v^2\right)\ge0\)
Đúng theo BĐT Schur bậc 3: \(w^3+3u^3\ge4uv^2\) và BĐT quen thuộc: \(u^2\ge v^2\)
P/s: Ko chắc ạ..